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TABLE II Room-temperature elastic constants of Si3N 4 
and SiC [6] 

Young's modulus Poisson's ratio 
E(MN m -2 ) 

HS-130 Si3N , 31 • 104 0.218 
NC-203 SiC 45.5 • 104 0.226 

average values of 7 obtained by double-cantilever 
and double torsion techniques [7, 8] (solid lines) 
are also included in Fig. 2. The agreement between 
the 7 values for Si3N4 appears to be quite good 
(Fig. 2a); the agreement between 3' values for SiC 
also appears to be reasonable (Fig. 2b.) 

Since the 3' values in Fig. 2 were calculated 
from microcrack dimensions and indentor loads, 
it is important to be able to clearly observe the 
microcracks on the fracture surfaces of the speci- 
mens. Since this may be difficult in some cases, 
further simplification of the calculations was made 
by assuming the microcracks to be exactly semi- 
circular with 2c equal to the long diagonal length 
L of the indentation (see Fig. 1). Under this as- 
sumption the actual determination of the micro- 
crack dimensions is not a requirement and the 3' 
values can be calculated simply (solid circles in 

Fig.  2) from the dimensions of the hardness im- 
pression. Comparison of these values to those 
represented by the solid line shows that the agree- 
ment is not particularly good; however, these 
simple modifications permit the prediction of 3' 
values to within 30% of those obtained by more 
sophisticated techniques. 

In conclusion, this study has shown that the 
approximate values of fracture-surface energies 
of hot-pressed Si3N4 and SiC can be predicted 
from microhardness-indentation loads and di- 
mensions. 
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The surface tension of Bi2 03 -based fluxes 
used for the growth of magnetic garnet 
films 

Thin films of rare earth iron garnet are commonly 
grown from solution in a PbO-B203 flux onto 
non-magnetic garnet substrates by the liquid- 
phase epitaxy (LPE) dipping process [1]. Such 
fdms are important for magnetic bubble domain, 
magneto-optic and microwave applications. For 
magneto-optic applications [2] it is desirable for 
the f'dm to have a large Faraday rotation (0) 
and a low optical absorption coefficient (~), the 
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ratio O/a defining the magneto-optic figure of 
merit at a given wavelength. 

It is well known that the partial substitution 
of Bi in the garnet lattice enhances 0 and that to 
obtain appreciable Bi substitution in garnet fdms, 
low growth temperatures are required [3]. How- 
ever, at such temperatures divalent Pb from the 
flux is readily incorporated into the garnet, 
substantially increasing e. Although the BaO- 
BaF2-B203 flux system may be used for garnet 
LPE, the combination of its high viscosity [4] 
and high surface tension [5] prevent a clean 
separation of the film from the flux on termina- 
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Figure 1 Apparatus for measuring surface tension. 
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ting growth, thus causing irregularities in the film 
surface. Consequently, it would be advantageous 
to develop a Pb-free flux having a low viscosity 
and surface tension and from which Bi-substi- 
tuted garnet films can be grown at temperatures 
below 800 ~ C. 

Robertson and Brice [6] have used flux sys- 
tems consisting of mixtures of Bi2 03 with small 
amounts of  RO2 (R = Ce, Sn, Ti, Si, or Ge) for 
the growth of garnet layers but encountered 
difficulties in removing the melt from the grown 
film. Bruton [7] has measured the viscosities of 
Bi203 and mixtures of Bi203 with SiO2 and 
TiO2 at various temperatures. As part of a study 
to optimize flux systems for the LPE growth of 
Bi-substituted garnet films, surface tension meas- 
urements on a series of modified Bi203-based 
fluxes are reported here. 

The apparatus used to measure surface tension 
is shown in Fig. 1. Essentially it is a modification 
of the dipping cylinder method reported by 
Babcock [8] and Shartsis et  al. [9]. The furnace 
is seated on a rigid "platform which can be raised 
and lowered smoothly at speeds of up to 1 mm 
rain -1. A pure platinum cylinder of external 
diameter 0.75 cm and wall thickness 0.02 cm is 

suspended from a Beckman LM600 Microbalance 
so that the lower edge of the cylinder is hori- 
zontal and just above the surface of the flux. 

The flux is homogenized overnight at 1000~ 
cooled to the measurement temperature and then 
the furnace raised so that the flux contacts the 
platinum cylinder. The motor is immediately re- 
versed so that the cylinder is effectively being 
pulled out of the flux. The measured force exerted 
on the cylinder increases to a maximum and then 
decreases prior to the cylinder separating from 
the flux. Surface tension, o, is then calculated 
from [ I0] ;  

o = ~ -  1 -  2 .8284+0.6095 + 

+ 2 . s ss  

where W = maximum pull on cylinder, R = mean 
radius of cylinder, g =  gravitational constant, 
h = W/OrR 2 e), e = density of the flux, 26 = thick- 
ness of cylinder wall. For the systems studied, 
the third term is negligible and the second term 
is ~2% of the first. Therefore, an accurate value 
for the flux density is unnecessary, 8gcm -3 
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Flux Additive a at 850 ~ Lowest operating 
(wt %) (dyncm -1) temperature 

(~ C) 

Bi 2 0  s 213 830 
Bi 20 s/CeO 208 850 

1% K~O 175 
2% K 20 164 <725 
4% K20 151 670 
6%K~O 141 665 

Bi 20 a/CeO 2 4% Na 20 166 730 
4% Cs20 155 730 
2% BaO 192 830 

Bi 203/SnO~ 4% K~O 166 670 
Bi 20 a/TiO 2 4% K 20 155 700 
Bi 20 s/SiO 2 4% K 20 162 700 
Bi 2Os/GeO 2 4% K 20 156 710 

Bi20 s 4% Li20 171 630 
4% Na20 157 615 
4%K~O 152 670 
4% Rb 20 168 740 
4%Cs20 169 740 

Bi 20 s 2.5%B 20 s 201 670 
52%MoO~ 132 650 
4%V 205 187 (950 ~ 940 

Bi~ O s 66% PbO 140 720 
46% PbO 

Bi~O s [ 2%B2Os 155 565 

PbO 2%B~O 3 131 <800 

Note: For fluxes of the type Bi2Oa/MO 2, the molar 
ratio of Bi 20 s : M O  2 is 49 : 1. 

being assumed for all systems. 
Measurements were made at least three times 

at each temperature. Reproducibility was to better 
than 3%. By comparison of measured values with 
published values for a number of liquids at room 
temperature, accuracy was estimated as +-5%. 
Measurements were made over a wide temperature 
range, the lower limit being set by the flux freez- 
ing point or the point at which a second phase 
separated. 

The data obtained for pure Bi203 and modifi- 
cations are collated in Table I. For comparison, 
values have also been measured for some PbO- 
based fluxes which are commonly used for garnet 
LPE. Surface tension values are shown only for 
850~ since the temperature coefficient of surface 
tension is small for all the systems studied. Typic- 

ally, surface tension was found to increase by 
1% for each 100~ decrease in temperature. 

Of interest here is that for compositions contain- 
ing PbO the surface tension actually decreases 
slightly with decreasing temperature, a trend 
previously observed by Shartsis et al. [9] for 
PbO-B2 Os and PbO-SiO2. 

Clearly the addition of alkali metal oxides has 
two beneficial effects. First, there is a marked 
lowering of the surface tension for both the 
Bi203 and Bi2Os-MO2 fluxes. On a weight 
% basis K20 gives the maximum lowering of 
surface tension. Indeed, garnet films have now 
been successfully grown from both the Bi203-  
K20 and Bi2Oa-CeO2-K20 fluxes. Preliminary 
results indicate that the K20 addition does re- 
duce flux adhesion to the film surface [l 1]. 
Second, there is a substantial reduction in the 
film growth temperatures that can be employed. 
Since the garnet film composition depends on 
the growth temperature, extending the range of 
growth temperatures enables a wider variety of 
film compositions to be grown. In particular, 
the Na20 additive allows film growth tempera- 
tures ~200~ lower than the freezing point of 
the Bi203 and Bi203-CeO2 fluxes. 
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Spherulitic cracking in high density 
polyethylene 

A recent report [1] has shown that cracks occur 

in spherulites o f  nylon 6 deformed in tension. 

These were observed to appear as circumferential 

defects in sectors of  -+ 30 ~ to the tensile direction 

on the surface o f  yielded bulk specimens, and were 

suggested to allow the formation of  larger cavities 

leading to eventual fracture. We wish to report a 

similar phenomenon on the surface of  HDPE 

deformed in plane-strain compression. 

The surface of  the polyethylene was prepared 

by etching in a beam of argon ions [2],  and 

positive metal replicas similar to those described 

by Wu et al. [3] were made of  the surface at 

Figure 1 Scanning electron micrograph of an 
undeformed spherulite of HDPE. The small 
spheres are artefacts. Scale = 10 urn. 

Figure 2 The same spherulite compressed to a 
strain of 30% showing deformation cracks 
(refer Fig. 3). Scale = 10 urn. 
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